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Low-temperature behaviour of the six-state clock model with 
competing interactions 

F Seno, D A Rabsont and J M Yeomans 
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK 

Received 23 February 1993 

Abstract. The phase diagram of the six-state clock model on a three-dimensional lattice, 
with first- and second-neighbour competing interactions along one direction, is analysed 
using a systematic low-temperature expansion carried to all orders where necessary. A 
transfer-matrix methoe5 simplifies the configurational analysis. We find that an infinite 
number of commensurate phases are stable near a zero-temperature multiphase point; a 
richer hierarchy of ‘mixed‘ phases is found to be stable down to zero temperature than in 
the AN”, model. The system corresponds to an XY model with infinite hexagonal 
anisotropy and may be relevant to rare-earth multilayers. 

1. Introduction 

Rare-earth metals show an interesting variety of magnetic phases, many with long 
wavelengths that can be commensurate or incommensurate with the underlying 
lattice. Recent work in rare-earth multilayers has rekindled interest in these systems 
(see e.g. Majkrzak etaf 1991 and references therein). The bulk phase diagrams of the 
rare-earth metals holmium, dysprosium, and terbium display regions with helical (i.e. 
easy-plane) spin order; these have been described with an XY model including 
competing, temperature-dependent ferromagnetic and antiferromagnetic interactions 
along the axis of the helm and six-fold anisotropy (Yoshimori 1959)t. Previous work 
has used mean-field theory and concentrated on fixing the exchange parameters at 
values appropriate to the experimental systems (Jensen and Mackintosh 1991). A 
different approach now seems useful: by elucidating the phase diagram of these 
models for more general values of the couplings, we hope to predict ways in which 
multilayers displaying new physics can be fabricated. 

This paper takes a first step along this path by considering the low-temperature 
behaviour of the six-state clock model on a three-dimensional lattice with first- and 
second-neighbour competing interactions along the axial direction. This system 
corresponds to an XY model with infinite hexagonal anisotropy. We find that an 
infinite humber of commensurate phases are stable near a zero-temperature multi- 
phase point. 
7 Current address: MS B262, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. 
t In bulk, the helical phase is replaced at low temperatures with conical ordering. in which the spins acquire 
a component perpendicular to the easy plane. Within our model, this extra component plays no role (except 
in altering the temperature dependence of the parameters J ,  defined below). It is worth noting that even 
very thick (SO00 A) films of Ho grown by molecular epitaxy appear to stay in the helical phase down to zero 
temperature (Jehan er al 1993). 
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2. The model and its ground states 

The three-dimensional, six-state clock model with competing axial interactions Jl and 
J2 is described by the Hamiltonian 

where the Roman indexj labels the planes of spins perpendicular to the axial direction 
and the Greek indices the spins within each plane. The first term sums over each spin 
a in plane j and each in-plane nearest neighbour B of a. The integers nia assume the 
values 0,1,. 2,3,4,  and 5, representing spins lying in the planes and pointing at angles 
23rfija/6 relative to the x axis. Each spin has unit magnitude. By taking the in-plane 
coupling to be ferromagnetic (Jo positive), weensure that at zero temperature all spins 
within any given plane point in the same direction. We can also take .TI to be positive 
(ferromagnetic), because the problem with an antiferromagnetic first-neighbour axial 
interaction maps on to the ferromagnetic problem hut with the spins in every second 
layer rotated by x.  We consider only positive (antiferromagnetic) values for the 
second-axial-neighbour interaction J,, as the completely unfrustrated ferromagnetic 
system displays no interesting behaviour. 

The aim is to construct the low-temperature phase diagram of this model as a 
function of x = JJJI and of the temperature, T. For a given rare earth, the effective 
interactions Jo, J,, and J2 depend on temperature, pressure, and, in multilayers and 
thin 6Ims, the layer thickness (Jensen and Mackintosh 1991). Varying one of these 
parameters then describes a one-dimensional trajectory in the two-dimensional phase 
space of Jz/JI against T (see figure 1). 

One easily verifies the ground states of the Hamiltonian (1) as a function of x.  
Since the in-plane coupIing is ferromagnetic, we can represent each plane of spins as a 
single numberq along the axial chain; thus we represent the ferromagnetic phase that 
prevails at T=O for x<+ by 

. . .ooooo . . . (2) 
understanding the inclasion of the other, equivalent, ferromagnetic phases, 
. . .22222. . . and so forth. For $<x<  1, the ground state has axial ordering 

. . ,012345012345 . . . (3) 
again including equivalent orderings such as . . ,321054. . . . For x> 1, the ground 
states 

. . .013401340134. . . (4) 

(5) 

and 

. . .003300330033. . . 
are degenerate. We shall see, however. that any non-zero temperature will lift this 
degeneracy in favour of (5). 
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Figure 1. Results from mean-field theow. Along the horizontal axis is plotted the ratio of 
the antiferrdmagnetic next-nearest-neighbour and ferromagnetic nearest-neighbour axial 
bond strengths. For the purposes of this figure. we have setJ,=l, and z =  6. The vertical 
axis i s  temperature in units ofJ,lk,T. The Curie-Weiss temperamre above which there is 
no net magnetization in the planes is 3.9 a t  the left side of the graph, 4.6 at the right side. 
We numerically and iteratively wnsider pairs of stable phases at their coexistence line, as 
deteermined in the previous iteration-, and their ‘child‘ phase (e.g. (23) from parents (2) and 
(3)). Numerically, it appears that phases not formed in this way are never stable. For each 
phase considered, the program starts with fully saturated magnetisation in every plane and 
iterates a mean-field equation until the magnetisations stop changing. It then calculates 
the mean-field free energy; the free energies of the phases are compared to establish the 
stability of the child phase and its lines of coexistence with its parents. Many of the phases 
found by the program are too narrow to be visible in the figure; others may be too narrow 
for the program, with finite precision, to find. Because mean-field theory cannot dis- 
tinguish (2) from (2) (the difference involving a correlated excitation of two spins), the 
phases (2‘3) are found to come in. Otherwise, there is good agreement with the 
low-temperature expansion presented in the text. 

At x = 8, (2) and (3) coexist, but no other phases are stablet. Contrast this with the 
multiphuse point at x = 1, where infinitely many phases coexist. These are states for 
which the difference, ln!+t-rztl, between successive planes of spins is always either 1 
or 2 with the proviso that a ‘skip’ of 2 cannot be followed immediately by another skip 
of 2. The antiferromagnetic coupling Jz requires furthermore that the entire chain 
should maintain one helicity: the difference in spins between successive layers is 
always positive for the whole chain or else always negative. In addition to these states, 
the phase (5)  also has the same energy at this ratio of the axial couplings. 

To label these phases (except for (5)) in a way consistent with previous work on 
the anisotropic next-nearest-neighbour Ising (ANNNI) model (Fisher and Selke 1980, 
1981, Fisher and Szpilka 1987a, 1987b, Szpilka and Fisher 1986,1987, Yeomans 1988, 
Selke 1992) we say there is a wall between two successive planes when their spins 
differ by 2 instead of by 1. Two walls k spins apart are said to bound a k-band. A state 
is labelled by (k ,kZk3 .  . .) if it comprises a repeating sequence of bands of lengths 

t We briefly discuss below the phase 45001233, which wmes very close in energy to the phases (2) and (3) at 
x = +  and which actually becomes the stable phase at a sufficiently high temperature. 
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k l ,  kr, k3, . . . . It may be helpful to list examples of phases degenerate at x =  1 together 
with their labels. Walls are indicated by vertical Lines: 

(2) . . .01134101134.. . 
(2'3) . . . 01~34~012~45~12~450 . .  . 
(34) . . .01214501\34511234 . . . . (8) 

At J2 =J1 (x  = l ) ,  the energy cost in terms of the nearest-neighbour axial bond J1 of 
introducing a wall is exactly balanced by the energy benefit to the next-nearest- 
neighbour interaction J,, provided there are not two successive walls. Thus all states 
describable in this language that do not contain a I-band are degenerate at x = 1. The 
phase (5), which cannot be described within this notational scheme, is also degenerate 
at x =  1; we label it (3). 

Now the six-state clock chain (a) with no walls has energy per spin -&Jo-&Jl - 
&J2, where z>2 is the number of nearest neighbours a spin has in its own plane. As 
our model is relevant to rare-earth metals, we shall mostly be interested in z=6 
(Jensen and Mackintosh 1991). The energy cost of adding an isolated wall, e.g. of 
changing 01234. . . to 012145.. . , is J1-J2=J1(1 -x). So long as walls are always at 
least two layers apart (no 1-bands), they are isolated, at zero temperature, giving for 
the energy per spin of a state with a density of walls W per plane 

Eo - ?; zJ0 - & J,(l+ X) + J1( 1 -x)W. (9) 
To confirm our earlier assertions about the gound states, note that for x i  1, Eo is 

minimized by setting the wall density to zero, yielding the (m) phase, while for x >  1, 
walls are favoured up to the maximum permitted density, one wall every two layers, 
giving the (2) phase. 

While Eo depends solely on the parameter W, we shall need to know more about 
the structures to determine their free energies at non-zero temperatures. It is helpful 
to follow Fisher and Selke (1980,1981) and introduce variables lkLkzk, ..., defined as the 
number of times per spin the band-sequence klk ,k , .  . . appears in a given state. For 
example, for (223) (equation (7)). 

&=+ l2Z3 = f . (10) 12=P 1, = +. 
The total wall density W is simply the sum of all the single-band structural 

variables, Zkr2Lk. In the (2) phase, &=*, while Ik for k=3 ,4 ,  5, . . . is zero. 

3. Low-temperature series: fist order 

Our aim is to understand which of the degenerate states persist at non-zero tempera- 
ture around the multiphase point, x=l. To this end we perform a low-temperature 
expansion around all possible ground states following the method of Fisher and Selke 

The low-temperature expansion follows as usual from a decomposition of the 
partition function (Domb 1960). Consider a ground state with energy Eo. Now 
consider the excitation caused by flipping some finite number of spins, which can be 
either connected by bonds or disconnected. Let the ith such excitation have an energy 
cost relative to the ground state of Er, and for a tixed ground-state configuration let 
there be g, ways of placing it on the lattice. 

(1980, 1981). 
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The linked cluster theorem (Domb 1960) establishes that one can write the free 
energy per spin in terms of the energies E, and counts gi as 

w 

f = Eo - kB T yi e-BE, 
i=1 

where y!, is the intensive part of the count per spin and /3 is the inverse temperature, 
llk,T. For a connected excitation, giis proportional to the number of spins, N, so that 
yt =gi /N.  However, an unconnected excitation also has quadratic and higher powers 
of N the difficult but physically necessary result of the linked-cluster theorem is that 
all of these cancel, leaving just the parts Linear in N: yj= Linear(gj)/N. 

The Boltzmann factors exp( -BE,) are made up of the weights 

(12) w =  e-(1/2)191, = e-(w& and -1 = e(1/2)& 

for changing an in-plane, axial nearest neighbour, and axial second-nearest neighbour 
bond, respectively from one between two equal spins to one between spins differing 
by 1. 

Table 1 lists the six different local environments for spins, their energies, and the 
Boltzmann weights (entropic contributions) associated with flipping each possible spin 
plus one clock direction and then minus one clock direction (these two have been 
added together in the last column). These entropic terms can stabilize phases at non- 
zero temperature. As a simple physical illustration, consider the phase (3). At T=D, it 
loses in energy to (2) (or (3)) to the right (x> 1) of the multicritical point x= 1 and to 
(m) to the left (equation (9)). However, none of these phases to which it loses can 
support the excitation labelled U +  I (the superscript indicating a flip in the positive 
sense, as defined by helicity, the bar a wall) in the left column of the table, as none has 
any sites U ,  for which one requires a wall density W strictly less than + but still greater 
than zero. Since phase (3) has the highest density of sites U of any possible phase, it 
should spread out in both directions from the multicritical point, as its superior 
entropy dominates the fixed energy difference between it and its competitors. The 
excitation d I is rather simple; when  we^ consider increasingly complicated exci- 
tations, generally involving spin flips on linked sites over some distance, more phases 

Table 1. Limiting ourselves to the phases of interest near J2=J,, we list the six possible 
local neighbourhoods for a spin. differing in whether their first- and second-neighbour 
bonds cross walls. We list the label (adopted from Fisher and Selke, 1981), an example, 
the density of such spins in a chain, the energy of the spin, and the sum of B o l m m n  
weights for flipping the spin plus and minus one clock direction. The densities are given in 
terms of the wall density W and the two structural variables l2 (density of 2-bands) and 1, 
(density of 3-bands): note that the thud column sums to 1. 

Label Example Density Eo per spin' Entropy 

0 01234 1 - (4W- 13-21J - + d o  -+J ,  -+J2 2y'"w' 
It 012315 2(W- 12- 1,) - & J O - B J I - S J ~  (y+yl+?w' 
P 5112315 1, -+do -+J ,  - J2 2y""w' 
U 019145 2(W-4) -+do -& (ItY"3W' 
t 5112145 21, -+zJo-Ji 5"w' 
z 00330 -' -+do - J2 2y"w' 

"This phase cannot be described in terms of the structural variables I&. 
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will spring out, as in the ANNNI model (Fisher and Selke 1980,1981, Fisher and Szpilka 
1987a, 1987b). 

We could proceed by fixing the ratio J&, at some value and simply List all the 
possible excitations, in order of increasing energy cost, along with their entropies. 
While this is relatively straightforward for the first dozen or so excitations. we will 
take a more systematic approach and treat the series as an expansion in w’, implicitly 
assuming that Ja is sufficiently large compared to J1; we defer to the end a brief 
discussion of the extent to which the argument can be modified to accommodate a Ja 
that is not necessarily large. Only flips of a single clock direction (nja +ni= 1) need be 
considered in low order, with correction terms of order d2 for Rips of two clock 
directions. 

We consider now all such excitations of a single spin, that is all excitations coming 
in with a weight w‘ times some power of y. Whereas the ‘zeroth-order’ result for the 
energy cf at T=O) in (9) depended.solely on the wall density W, to first order we 
require the additional structural variables lz and I,. Reading off the free energy per 
spin directly from table 1, we have 
f= - ~ Z J O  - fJ!(l+ X )  

+J1 W(l - x )  - kB Tw‘[(l - 4W + 1, + 21$y lis + 2( W -  12 - 1,) 01 + y “”3 
+2t3y’+7J +2(W- 4) (1 +y”) + 4t2y77 + O(w”-’) (13) 

where the correction term arises from flips of two connected in-plane neighbours. 

between their free enerpies,fn,-f(W=Zz=~, 13=0) andfa,=f(W=), &=O, I,=+): 
The coexistence line of (2) and (3) is recovered by setting to zero the difference 

4kB T 
Ji 

x(3):(2)= 1 +- w y 1  +y”+y’+2’-3y”) + o(wz--*). (14) 

Similarly, 
2kB T 

Ji 
x,).o) = 1 -- w y 1 -  3y + 4y1+2 +y3z - 3y1+3r) + O(w2-Z) (15) 

and 
2kB T 

x(,,,(4) = 1 - 7  w‘(l+ y - 4yi+x+y3x +y’+>) + O(w“-Z). (16) 

The free-energy difference between the ( m )  phase and any phase (k}, k a 4 ,  is 
linear in W. therefore all of these phases coexist on the boundary defined by equation 
(16), although they do not occupy any area in the phase diagram. All phases 
containing 3- and 4-bands are degenerate on the coexistence line (U), and all phases 
containing 2- and 3-bands on (14), to this order. 

Reading from the last two rows of table 1, we see that the free energy of (2) is 
identical to that of (2). Therefore, to this order, they remain degenerate at all 
temperatures. To break this degeneracy, and those on the phase boundaries (14)- 
(16), higher-order terms in the low-temperature expansion are needed. 

4. Low-temperature series: higher orders 

The (2)-(3) region 
No flip of a single spin can distinguish the phases (2) and (2): the excitation comes in 
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with the same energy and degeneracy in the two phases. Nor for the same reason can 
the next highest-cost excitation, the flipping of two neighbouring spins in the same 
plane in the same direction. One sees, furthermore, that the global spin rotation on 
the odd (or even) sublattice taking 00(33(00(33 into 01(34(01(34 leaves invariant the 
energy (and obviously the count) of any spin excitation residing solely on one or the 
other sublattice?. 

However, as soon as we consider Aipping two axially-connected'spins in neigh- 
bouring planes, we find one phase favoured. In the (?)-phase chain 00(33(00, a spin 
Rip f l  of any connected pair on successive planes between walls costs energy 
do - J ,  +Uz. This is the lowest-energy excitation involving two connected spins in 
adjacent planes, and it has a degeneracy of 1 per spin. The chain 01/34j01 supports an 
excitation of the same energy, but with one half the degeneracy. Therefore (2) always 
wins over (2) at sufficiently low temperatures. 

In table 2, we collect the densities and Boltzmann weights for all two-spin 
excitations. Noting that in the (2) phase l2=3 and 13=0, we see that the difference. in 
free energies between it and the (3) phase is 

which in this order is always negative, as y is'stnctly less than unity. 
Now it is possible to use the information given in table 2 to check if new phases 

appear between (2) and (3) at second order. Previous work ( Fisher and Selke 1980, 
1981) has suggested that the first phase to consider is (23), and indeed this is the only 
phase made up of 2- and 3-bands that could be distinguished by two spin Rips. For 
(23), 12=13=4. Hence, to leading order, the free-energy difference between the 
candidate phase and its parents. evaluated at the coexistence line between the 
parents, is$ 

This is negative at low temperature, and we can~conclude that (U) appears as a stable 
phase of width O(w2.3 between (3) and (3). (In this order (18) turns slightly positive 
for temperature over about 1.3583, Iks, but at this temperature the low-temperature 
series cannot be trusted. We expect the phase to remain stable at higher temperatures; 
see figure 1.) 

It is not hard to argue that no other phases can appear between (2) and (23). 

?This is because the Jz (second-axial-neighbour) bonds are invariant under the transformation, while the 
sum of the two J ,  bonds cancels, since the two axial neighbours of any spin are left Q radians out of phase, 
and cos(x)+cos(n-x)=O. 
t The construction of equation (18) obviates the need to consider the left and right boundaries separately. 
We see from equation (13) that for two phases c and d, fc-h is to first order linear in W,- W,  (using 
W=f2+f,=(1/3)(h+1)); from the values of W for the three phases, it follows that the left-hand side of 
(B), evaluated at any x ,  vanishes in first order. In particular, all firstdrder terms vanish when we look for 
the new phase along the (previous-order) coexistence line of the two parent phases by substituting X=.X~,~ Ri 
(equation (14)). Now if instead of X = X { ~ ) : ~ )  we substitute x =  1 (which is easier), we make an error in the 
second-order terms only (the zeroth and first having vanished) of order wiwQ = w", which we may neglect. 
This construction generalizes to higher orders; see Fisher and Selke (1981). 
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Table 2. We list all two-spin excitations that are possible on the a ) : ( ? )  boundary: we thus 
have l,=O for kz4. Note also that a t  least one of la and la vanishes. The local 
environment symbols p, U, I, and i are as in table 1. We denote by 0: 0 two entirely 
independent excitations; for these, the count is not the full count but only that part linear 
in N (see text). The other symbols wnvey information about the environment of the two 
spins Ripped. The symbol 00 means two neighbouring spins on a single plane, 0.  0 axial 
nearest neighbours not separated by a wall, 010 axial nearest neighbours separated by a 
w&, and 0.0 next-nearest axial neighbours. The last five rows of the table wncem the 
phase (5). 

Configuration Count per spin Bolomann factor 

1 

Candidates are states made up of 2-bands and 23-sequences. Consider a state (v) with 
kz of the former and ku of the latter. Then 

is O(w3'). It follows from equation (17) that 

is O(w2') and positive. Hence the (?):(23) coexistence line marks a first-order 
transition rather than a multicritical lie, and no other phases spring from it at zero 
temperature. 

To put the same argument more physically, the excitation d - z +  (table 2), which 
favours the (23) phase over the two parents, has a lower energy cost than the 8, Z 
excitation responsible for (2)'s stability over (2). This latter, however, costs less than 
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the three-spin excitation that would favour (223) or those that would bring in more 
complicated mixed phases. Therefore these fail to attain stability?. 

Consider now the boundary between (23) and (3) where, to second order in w’, all 
phases containing only 3-bands and 23-sequences are degenerate. It is expected from 
previous analytic and numerical ‘work (Fisher and Selke 1980, 1981, Fisher and 
Szpilka 1987a, 1987b, Duxbury and Selke (1983) and Selke and Duxbury (1984)) that 
the first phase to appear between (23) and (3) is (233) = (23’). Consider the free-energy 
difference per spin 

The leading terms in this quantity are third order (the free energies being 
degenerate in lower orders), arising from excitations of three axially-connected 
second-neighbour spins together with their associated disconnections. These are the 
lowest-order graphs that span all the bands of (233. Therefore it is intuitively 
reasonable that they are the first graphs to distinguish (23’) and phases of shorter 
wavelength. 

Because one-dimensional chains of spins provide the leading-order contribution ro 
free-energy differences such as (Zl), their values can be calculated using a transfer- 
matrix approach first described by Yeomans and Fisher (1984). Details of its 
application to this problem are given in the appendix. One finds that the free-energy 
difference (21) is, to leading order in w 

which is negative. Hence (23’) is stable over a region O(w3’) between (23) and (3). 
The argument continues inductively on each phase boundary. It will be helpful to 

define n(v) as the number of spins in the sequence Y .  Consider two neighbouring 
phases (vl) and (v2) such that on the boundary between them all states made up from 
v,-sequences and v2-sequences are degenerate at a given order of the low-temperature 
series expansion. Our aim is to investigate which phases can appear between (vl) and 
(vJ at higher orders of the expansion. Let Y comprise p 1  q-sequences and p: 
v,-sequences (in any order). Then consider 

It is not difficult to show by construction, and it is intuitively reasonable, that the 
diagrams in the low-temperature series that do not drop out when the free energy 
difference is taken must comprise connected spin flips spanning at least n(v) - 3 axial 
planes (together with their disconnections). Of these, those contributing at lowest 
order are axial chains of spins. For n(v) even, the flipped spins must all be second 
neighbours, and the leading term in (23) is  OW@"'^-^^'^ )$. For n(v) odd, chains of 

tThe obvious question arises, ‘what happened to the multiphase line on which, in a given order n. all 
sufficiently long ( m z n )  phases (2-3) were degenerate?’ In fact it is still there, but For the reason just given 
it lies to the right of the (23):(2) line, well inside the (2) phase. We discuss later how sufficiently low .lo or 
high temperature can stabilize these phases. 
+Flipping only second-neighbour spins gives the shortest connected excitation spanning the given length. 
OF wurse, if we found that the free-energy difference a vanished in some case, we would have to consider 
chains of the same length but with more spins i3ipped. We prove in the appendix that this does not occur. 
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length n ( v ) - 3  with one first-neighbour pair of fipped spins and those of length 
n(v)-2 with only second-neighbour flips both contribute at leading order, 
O(W("(")-')~). A more detailed description of which axial chains are important, 
together with a description of how to calculate the corresponding Boltzmann factors 
using a transfer matrix method, is given in appendix 1. Because it corresponds to the 
smallest n(v), the first phase that could appear between (v,) and (vz) is (vlvJ. If is 
negative, it wiU be stabilised within a region O ( W ( " ( " ~ Y ) - ~ ) ' ~ )  of the (v,):(vz) boundary. 
Higher-order phases comprising vl- and vlv2-sequences and vz- and v,vz-sequences will 
remain degenerate on the (v,): (vlvJ and (YJ: (vIvJ boundaries respectively, and the 
argument must recommence. If is positive, however, (vlvJ has a higher free 
energy than either (vJ or (vJ and cannot appear as a stable phase. The (vl):(vz) 
boundary then remains stable to all orders of the low-temperature series expansion. 

In the appendix, we derive a general form for the leading order in w of all the free- 
energy differences a&, aut-t2)*, U @ - I ~ ) * - I ~ * ,  etc. Specializing to the leading order in y 
as well as w, we show that these, and indeed the free-energy differences relevant to 
the entire hierarchy of phases between ( m )  and (23), are always negative at sufliciently 
low temperature. Therefore every phase is sroble at low enough temperature in some 
finite region of the JZIJI-T phase space. 

Related issues 

The expansion made here tells us accurately what happens at sufficiently low 
temperatures but gives only limited information about possible higher-temperature 
phases. For comparison, we show in figure 1 a phase diagram derived from mean-field 
theory, which we will discuss in more detail elsewhere. The main difference between 
the mean-field treatment and that presented here is the failure of mean-field theory to 
distinguish between the (2) and (2) phases. Also, a numerical solution of the theory 
precludes finding the arbitrarily narrow mixed phases discussed above. 

We have assumed zJo>Jl. Cooper (1962,1968) has shown, however, that in some 
rare earths Jo is of the order of 1/50 J,. In fact, many of the qualitative results carry 
through to this regime, in which the expansion parameter is y instead of w .  The 
excitations responsible for stabilising some of the low-order phases (see (14)-(16) and 
(18)) do not involve any broken J1 or Jz  bonds (powers of y) :  therefore the first few 
terms of the expansion (11) are just successive powers of w. It is interesting to note 
that the phases (2"3) appear in this regime. There is one class of chains that can have 
arbitrary length before any J1 or Jz bonds are broken; this is u.5-r.. . . . Such chains 
stabilize the phases (2'3) at an (infinitely) lower energy, for infinitesimal Jo, than the 
excitation responsible for (2)'s stability over (2). Thus, if we are willing to contemplate 
a sufficiently small Jo, a finite number of these phases do come in at arbitrarily low 
temperature. Comparing the energies of the excitations, we find that for zJo< 
ZJ,l(n- l), the phase (2.3) becomes stable. These and mixed phases may also appear 
for larger Jo at higher temperature; however, it is not clear that the low-temperature 
expansion continues to be valid here. 

Although we have concentrated on the multiphase point x =  1, it is worth noting 
that the ferromagnetic-helical boundary at x = $  (at zero temperature) comes very 
close to being a multicritical point; the phase 00 12 33 45 has an energy per spin only 
3,124 higher than the ferromagnetic and helical phases at that point. Furthermore, it 
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supports an excitation of lower energy than any found in either of the latter and so 
might be expected to acquire stability on entropic grounds at a sufficiently high 
temperature. If we set z = 6 ,  the new phase comes in at temperatures kB T around 2Jl 
for Jo/Jl = 1 and at 0. 13J1 for Jo/J1 = 1/50. Higher-energy excitations favour this phase 
over similar phases, such as 00 123 44 501 . . . , so there is no multicritical point nor 
any infinite branching of phases. 

Sasaki (1992) has interpolated between the six-state clock model and the XY 
model by adding to the .latter a variable six-fold anisotropy. Expanding about the 
point with infinite anisotropy, and adding an external field, he finds a very rich phase 
diagram, including possible 'upsilon points' (Bassler et al 1991), even though his 
attention is restricted to zero temperature. 

The model can be modified by alternating layers of some thicknesses of magnetic 
metals and non-magnetic conductors, through'which the magnetic layers interact in a 
RKKY-like manner (Majkrzak et a1 1991 and references therein, Deaven and Rokhsar 
1991, Jones and Hanna 1993, Chen and KO 1993). This interaction can be modelled 
with effective axial bond strengths J; and Ji; it is then interesting to look for 
qualitatively new phases. 
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Appendix 1. Transfer matrices 

Our aim is to calculate free-energy differences such as (22). The leadmg-order 
contributions come from certain axial chains of flipped spins the associated Boltzmann 
factors of which can be most easily calculated using a transfermatrix formalism. The 
basic idea is to calculate the entropy of a finite-spin excitation, of length about equal 
to the periodicity of the phase in question, as a finite product of matrices, each 
representing two spin flips. The matrix product sums over intermediate spin states, 
and vectors cap the product at each end. We refer the reader to Yeomans and Fisher 
(1984) and to Fisher and Szpilka (1987a) (especially sections 1II.A and 1II.B) for a 
more detailed account of the principles whose application we describe here. 

Consider a spin sequence Y of length n(v). To establish its stability (entropic 
advantage) over some parent phases will require a spin-excitation chain spanning v's 
length. For an even-length sequence, the shortest such chain. and hence lowest-order 
in w ,  flips a spin in every second plane for a total of $(n(v) - 2)  flipped spins. 2 x 2 
transfer matrices can then be used to calculate the Boltzmann factors. If n(v) is odd, 
however, chains of length f(n(v) - 1) are needed, and somewhere in the chain a single 
pair of flipped spins can lie in nearest-neighbour planes. 4 X 4 matrices then prove the 
most convenient. 
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Figure 2. (a) A 2x2 matrix looks at spin flips in planes ti-1 and iC3 .  The Boltzmann 
weight for the second-axial-neighbour bond between them, shown as a dark line, is 
counted at full strength, as only one matrix includes this bond. The first-axial-neighbour 
bonds, shown as lighter lines, are each counted by two matrices (this matrix and the one to 
the left or to the right). These therefore count at half strength, or the square root of the 
Boltzmann weight. (b) A 4 x 4  matrix fips one spin in each of the circled pairs. The two 
second-awial-neighbour bonds are counted at full strength, as is the first-axial-neighbour 
bond between the neighbouring planes of the two pairs. The first-axial-neighbour bond 
within each pair, however, counts at half strength. 

A.I. n(v) even 

We first construct the transfer matrix that looks at the effects of flipping two spins in 
next-nearest-neighbour planes if 1 and i f 3  (figure 2(a)). The next matrix to the right 
will tlip a spin in plane i f 3  and another in plane i+5, while the matrix on the left of 
the f is t  matrix will consider flips in planes i- 1 and i + 1. The Boltzmann weights of 
the four axial-nearest-neighbour bonds to the left and to the right of the two flipped 
spins come in at only half strength, as each will be counted by two matrices. The 
second-neighbour bond between the two flipped spins of a matrix, however, is 
counted only in that matrix and so has full strength. Each matrix additionally will 
count the z broken in-plane bonds in each of layers i+l and i+3,  again at half 
strength. 

Since we have to consider disconnected as well as connected diagrams, the spins in 
layers i f 1  and i + 3  need not lie on an axial line. From the connected value, we 
therefore subtract (the sign a consequence of the Linked-cluster theorem) the 
Boltzmann weight for the i + l  spin connecting to an unflipped i + 3  spin and 
viceversa. As we are interested in the matrices evaluated at x =  1 (see main text), and 
for simplicity, we show the results with this substitution. The first matrix is 

(i) a walljutto thelef tof layeri t3  (:,?sl$s) 

The first (row) index of the matrix gives the change ( + I  or - 1) in the value, n;+,, of 
the h s t  spin, while the second (column) index gives that of the second spin, at i f3 .  
The matrices for other environments follow similarly. Reading a chain from right to 
left looks the same as reading it from left to right, except that helicity (0543 . . . against 
0123. . .) is reversed. We therefore denote by a dagger (') the duality operation of 
reversing plus and minus Eps and also transposing rows (left index) and columns 
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(right index)?. The matrix corresponding to a wall just to the right of layer i+l 
(sflsfs) is then sZ'=d. The other matrices are: 
(ii) a wall just to the right of layer i + 3 (sfs3 [ s) 

) ( 1-y-2 1-y  
1 - y  y3-y4 '& wzy112 

(iii) no walls affecting any of the bonds under consideraion (sfs3s) 

9 =y"% (A.3) 

'& = y - " 2 d  (A.4) 

5=y-"% (A.5) 

(iv) walls immediately to the right of bothflipped layers, i+ 1 and i+ 3 '(ss~sfls) 

(v) waNsimmediatelytotheleftofi+landtotherightofi+3 (slfs3[s) 

Each of these matrices is self-dual. 
The following column vectors account for the contribution associated with the last 

(rightmost) flipped spin in a chain, contracting the last index of the matrix product. 
All the other broken bonds having been included already in this matrix product, these 
vectors describe only the nearest-axial-neighbour bonds to the left and right of that 
last spin (counted at half strength) and the second-neighbour axial bond heading to 
the right: 
(i) a wall lies two layers to the right of theflipped spin (sfsls) 

(ii) a wall lies immediately to the lejl of theflipped spin (si fss) 

(iii) no walls lie within bonding range of theflipped spin (sfss) 

#$ =y  112y (-4.8) 

E= y -1128 (-4.9) 

(iv) walls lie immediately to the left and two layers to the right (s [ fs [ s) 

the upper element of each vector is obtained from An= + 1, the lower from - 1. As 
these spins lie on the end of a chain, thew is no separate disconnection term. 

Row vectors are needed to account for the contribution associated with the first 
(left-most) flipped spin of the chain; they are minus the dagger-conjugates of the 
column vectors, - y'= w(ln)'(y -' y*), for instance, representing a~wall immediately 
to the right of the leftmost flipped spin in the chain. 

To apply this matrix method to the free-energy difference 

L12r = f z 2  -$fu - +f3 (21) 
i This has the effect of reversing upper-left and lower-right elements. We define X t =  (QXQ)', where Q is 
the matrix with - 1 along the antidiagonal. The sign has no effect on matrices but will be convenient when 
we a d  on vectors. 
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we consider the two diagrams involving the smallest number of flipped spins that 
distinguish (233) from its parents (23) and (3), 

(A.lO) s I ss I sss I sss I - &+.@spy 

and 

I sss Isss I fs Is - Jsltsae (A.ll) 

where the spins are represented with letters s and the walls with vertical bars. We then 
subtract the diagrams 

s 1~31~s~ 13s Is - &+SA+&%& (A.12) 

and 

I s s  I sss pss I - y+54+Sdy (A.13) 

which occur in the parent phases but not in (23’), to give 

(y-e)’&(y- E) ,  
k J  
8 

au2 = - - (A.14) 

Note that the fractions multiplyingf, andf, in (22) give the densitities of these phases 
relative to&, causing all terms of lower-than-leading order to cancel. This genera- 
lies for all even k to 

(y -  &)tsn(Je~d)(*-*”(y- &) k32even. (A.15) kBT a&=-- 
2+3k 

Diagonalizing the matrix, we get to leading order in y 

ka2even  (A.16) 

which is negative, establishing the stability of the (uk) phase over its parents at 
sufficiently low temperatures. 

A.2. n(v) odd 

Consider now the case of an odd periodicity. While most of the time only every second 
spin will be flipped, in each chain there can be one pair of adjacent planes with flipped 
spins. To allow for this to occur anywhere (but only once) in the chain, we use 4 x  4 
matrices; each represents four consecutive spins and counts half the weight of each of 
the first-axial-neighbour bonds between the first and second and between the third 
and fourth and the full weight of the two second-neighbour bonds between the first 
and third and between the second and fourth spins (figure 2(b)). It also counts zJo to 
cover half the in-plane bonds of each flipped spin. 

To avoid consideration of higher-order excitations than necessary, we will flip only 
one of the first and second spins and only one of the third and fourth. So long as we 
are careful with our choices of initial sites, this will entail no loss of generality. As with 
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the 2 x 2  matrices above, we evaluate the 4 x 4  matrices at n=l. Labelling the 
matrices by the quadruplets of spin differences for the four spins, 

+o+o +o-0 +oo+ +oo- 
-o+o -0-0 - o o +  -00-  
o++o o+-0  o+o+ o+o- 
0-+o 0- -0  0-o+ o-o- 

(A.17) 

(A.18) 1. 
1~ I 

i Y - Y j  - y 3 / 2 + y  5/2 - 7 / 2 + y 9 / 2  1 - y z  

0 0 

where ' + ' and ' - ' indicate a difference 2 1 and '0' no ilip at all, we get: 

(i) a wall lying between the second and third layers (JSl3S) 
l v y 2  - y 1 / 2 + y a  

- Y 712 + Y 9i2 1 - y2  0 0 
-Y 312 +Y 5'2 - l + y  1 -yz  -Y +Y 312 

A =  w2 

The zero entries in the top right-hand corner come from third-neighbour (i.e. entirely 
disconnected) flips; physically, these diagrams were already considered in lower order 
and so cancel when we calculate a. The dual of a 4 x 4 matrix, written in terms of its 
2 x 2 sub-blocks, is 

x o t  
( Y  z) =(";: i t )  (A.19) 

from which we see that A is self-conjugate, as indeed it must be from its geometry. 

(ii) a wall lying between the first and second layers (31.W) 

We shall also need the matrices: 

y112-y5 '?  - y + y z  0 
- 4 + 5 112 - y  512 0 

B=w" y 3 - y 4  -yS/2+y9/2 yl /Z-y3/2 y Z - y 3  

(E) no walls inside the span of four layers (333.t) 

(A.20) 

(A.21) 

(iv) walk between lhefirst andsecond and bemeen the third and fourth layers (fl331J) 

i 1-y2 -yl" +y312  0 0 \~ 

All the matrices except B are self-conjugate. 
To account for the initial (leftmost) pair of spins, with both of their second- 
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neighbour bonds to the left (at full strength), the first-neighbour bond between the 
two of them (at half strength), and the first-neighbour bond to the left of the pair (at 
full strength), as well as the in-plane bonds (at half strength), we require row vectors: 

(i) a walljust to the left of thejirstflippedpair (ss]$f) 

- a ’ = w  r l Z  (Y 312 1 Y 2 Y ?  (A.23) 

(ii) a wall two positions to the left of thejirstfiippedspin (s[s$$) 

-bt=w“2(y”2 y 1 y3”) (A.24) 

(3) no wall in mzge (ss9f) 

-dt=w”(y”2 y 2  1 y 3 9 .  (A.25) 

To account for the right-most flipped spin pair we use the column-vector conju- 
gates of these row vectors. For example, the spin configuration $$$Is corresponds to 

(A.26) 

The simplest application of the 4 X 4 matrices is to the free-energy difference 

aw =fw -#fU.- i t f 3  

in which the diagrams 

(A.27) 

contribute to ful, whilst 
h A’- 

1s ŝ slŝ s q3 s s[s  s SI -btAB%Ab 

and 
- A  sls?lfi $ s $Is SI; -ntAB%Aa 

(A.30) 

(A.31) 

come from5 and fuz. One spin in each pair (3) must be tlipped such that the flipped 
spins are always either first or second neighbours. This allows for the possibility of one 
nearest-neighbour pair in the chain. We thus amve at 

e,=-- kB (b - a)’AB%A(b - a). (A.32) 11 

More generally 

(b  -U)~AB~(BAB~)(~-’)’’BA(~ -a)  k33odd.  (A.33) et=-- 2+3k 
kB T 
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Now the matrix BABt cannot be diagonalized, but we can still write its powers in 
terms of its eigenvalues, giving to leading order in y 

27-16v5 k-1  (17-10'h) 
(A.34) 

12 
+- +[ 18 2 

which again is always negative. 
More complicated phases can be treated in an analogous way. For a phase (2p3) 

where p comprises 2- and 3-bands, contributions to the free-energy difference 
arise from the sequences that span +3,3p2, and with a negative sign for the parent 
phases, 3p3 and 2p2. For example, 

(b - ~)~A(B+BA)(~-~)'~B%B(AB~B)(~-~)/~A(~ - U) 
kB T 

u23-,ut = - - 
1+6k 

ka2even 

(A.35) 

k23odd.  (A.36) 

The formalism must be generalized slightly to treat the phases (k), k a 3 ,  which 

kB T 
1+6k 

-- (b -  a ) t ~ ( ~ t ~ ~ ) ( ~ - l ) " ( ~ ~ r B ) ( , - l ) / ? ~ ( b  -a) 

appear between (m) and (3). The stability of (k) is controlled by 
k-1 1 

a x - f k  - T f k - l  -if- 
ka4even 

(A.37) - k (b  - , ) t ~ W 3 ) / 2 ( b  1 + (8 -fi)tGJr'*-3)" (6-13) k a 5 o d d  

wherein the odd case we have used the identity bfDb=diDd-26"36+/3+96+ S'9flt. 
Again expanding D and 9 in terms of their eigenvalues, we find that, to leading 

orders in y ,  

---x( kBT (8-fl)t9(x-"2 (6-B) 

(S-fl)ta"(6-8)-(n+l)w(~+"~y"+' 

and 

( b t - ~ ' ) D " ( b - ~ ) - ( n + 2 ) ~ ( " + ' " y " .  

This establishes that a, is negative at sufficiently low temperatures for all k a 4 .  
We are now in a position to show that all phases anywhere in the hierarchy 

between (m) and (23) are stable. Consider first a phase of even period. A general 
.free-energy difference consists of a negative constant ( - ks T divided by the period) 
times one of two row vectors, ( ~ - 6 ) ~  or (6-mt, followed by a product of 2 x 2  
matrices, followed by the conjugate vector. The individual matrices (A.I)-(ASj are 
each positive scalar multiples of either sP~or%, so we consider only these two. Now we 

t Note that the second term (last line) in (A.37) then se~a in part to cancel a particular spin configuration 
that is counted twice in the first. Altematively, one can rewrite the first line of (A.37) as a,= 
( ( k + l ~ k ) a ~ + , + [ ~ ~ - ( ( k - l ) / k ) ~ . ~ ] - ( ( k + l ) / k ) [ ~ + , - ( k l ( k + l ) ) ~ ] ,  which effedivelysubstitntes ( k + l )  
for (m) as the left parent of (k),  adding a&+, as a correction for the difference between (k+ 1) and ( m). This 
case, the only onein which 4 X 4 and 2 X 2 matrices need to be mixed, iS more complicated than the others 
because one cannot form the (k) phase by appending (m) to a period of phase (k-1). 
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can find a basis in which, for sufsciently small y, only positive elements appear in the 
matrix product, ensuring that the h a l  result is positive. One easily confirms that the 
matrix 

,=,-I=( -1 0 ) 
0 1  (A.38) 

transforms the two vectors (and consequently their duals) as well as the matrix si, but 
not %, into a form in which all their elements are positive. However, by diagonalizing 
%, we get a general expression for %%%, and it is not difficult to show that all 
elements of this matrix are positive at low enough temperature. Now the matrix % 
always occurs either in the combination dqk, which we have just shown is made 
positive by %, or immediately following one of the two row vectors (or preceding their 
duals). However, ( y - - ~ ) ~ % %  and (S-B)%'% are also both positive, so we have 
established that a, is negative for all phases (v) of even period. 

We use a different argument for the 4 x 4 matrices appropriate to phases of odd 
period. The only vector we need (having eliminated d,  see above) is U = b - Q. One 
easily confums that ufu is positive for small enough y .  We note two sufficient 
conditions on a column vector U =  (ul U, U, u4)= for U'U also to be positive for small 
Y t :  

U,- - U,- - y  - > 0 (A.39) 
and 

y -"U+ U4% - y  -'"Uz. (A.40) 
Note that U satisfies both conditions. Now assume that U satisfies the conditions. 

Showing that u'=Mu also satisfies them for M=A, B, Bt, D, and E, we establish by 
induction that all products of our matrices set between ut and U give a positive result. 
We show this explicitly for A, omitting the rest of the proof in the interest of space. 

Bearing in mind the two conditions, we have 
UI--YU2U2 \ 

U, 
U'=Au= ( u 4 - y 3 ~ U ,  1 +higher-order terms. (A.41) 

-U, -k U )  -y%, 

We verify that U; remains positive, that U; and U; remain negative, that U{ -Y"~u;,  that 
U; and U; have the same order (note carefully the 3 and the P in (AM)), and that U; 
stays within its bounds. The other four matrices follow similarly. 

Since both even-period and odd-period matrix products are positive, the corres- 
ponding free-energy differences a are negative, and all phases attain a region of 
stability. Numerical calculation of the matrix products confirms this conclusion. We 
remark that the phases (2.9) fail to achieve stability not because of the matrices but 
because their free energies need to he compared with that of (5) rather than of (2). We 
note also that in determining the sign of the matrix products, we required specific 
information about the matrix and vector elements; an arbitrary product W'XW (even 
for X self-dual) is not in general positive. Indeed, in the A"NI model (Fisher and 
Selke 1980, Fisher and Szpilka 1987), not all matrix products are positive. 
t By r s q ,  we mean tim,-oqlr=O if q is positive or qlr-' m if it is neg+ve,,,while by r-q we mean that 
q/r is positive, finite, and non-infinitesimal in this limit.'The notation r a q  then indicates that either r + q  or 
else r-q.  Note that U, is required to be negative, wen though (Vr)!, is positive. 
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